Tablets https://theinshotproapk.com/category/app/tablets/ Download InShot Pro APK for Android, iOS, and PC Tue, 10 Jun 2025 18:02:00 +0000 en-US hourly 1 https://theinshotproapk.com/wp-content/uploads/2021/07/cropped-Inshot-Pro-APK-Logo-1-32x32.png Tablets https://theinshotproapk.com/category/app/tablets/ 32 32 Developer preview: Enhanced Android desktop experiences with connected displays https://theinshotproapk.com/developer-preview-enhanced-android-desktop-experiences-with-connected-displays/ Tue, 10 Jun 2025 18:02:00 +0000 https://theinshotproapk.com/developer-preview-enhanced-android-desktop-experiences-with-connected-displays/ Posted by Francesco Romano – Developer Relations Engineer on Android, and Fahd Imtiaz – Product Manager, Android Developer Today, Android ...

Read more

The post Developer preview: Enhanced Android desktop experiences with connected displays appeared first on InShot Pro.

]]>

Posted by Francesco Romano – Developer Relations Engineer on Android, and Fahd Imtiaz – Product Manager, Android Developer

Today, Android is launching a few updates across the platform! This includes the start of Android 16’s rollout, with details for both developers and users, a Developer Preview for enhanced Android desktop experiences with connected displays, and updates for Android users across Google apps and more, plus the June Pixel Drop. We’re also recapping all the Google I/O updates for Android developers focused on building excellent, adaptive Android apps.

Android has continued to evolve to enable users to be more productive on large screens.

Today, we’re excited to share that connected displays support on compatible Android devices is now in developer preview with the Android 16 QPR1 Beta 2 release. As shown at Google I/O 2025, connected displays enable users to attach an external display to their Android device and transform a small screen device into a powerful tool with a large screen. This evolution gives users the ability to move apps beyond a single screen to unlock Android’s full productivity potential on external displays.

The connected display update builds on our desktop windowing experience, a capability we previewed last year. Desktop windowing is set to launch later this year for users on compatible tablets running Android 16. Desktop windowing enables users to run multiple apps simultaneously and resize windows for optimal multitasking. This new windowing capability works seamlessly with split screen and other multitasking features users already love on Android and doesn’t require switching to a special mode.

Google and Samsung have collaborated to bring a more seamless and powerful desktop windowing experience to large screen devices and phones with connected displays in Android 16 across the Android ecosystem. These advancements will enhance Samsung DeX, and also extend to other Android devices.

For developers, connected displays and desktop windowing present new opportunities for building more engaging and more productive app experiences that seamlessly adapt across form factors. You can try out these features today on your connected display with the Android 16 QPR1 Beta 2 on select Pixel devices.

What’s new in connected displays support?

When a supported Android phone or foldable is connected to an external display through a DisplayPort connection, a new desktop session starts on the connected display. The phone and the external display operate independently, and apps are specific to the display on which they’re running.

The experience on the connected display is similar to the experience on a desktop, including a task bar that shows running apps and lets users pin apps for quick access. Users are able to run multiple apps side by side simultaneously in freely resizable windows on the connected display.

moving image of a phone connected to an external display, with a desktop session on the display while the phone maintains its own state.

Phone connected to an external display, with a desktop session on the display while the phone maintains its own state.

When a desktop windowing enabled device (like a tablet) is connected to an external display, the desktop session is extended across both displays, unlocking an even more expansive workspace. The two displays then function as one continuous system, allowing app windows, content, and the cursor to move freely between the displays.

moving image of a tablet connected to an external display, extending the desktop session across both displays.

Tablet connected to an external display, extending the desktop session across both displays.

A cornerstone of this effort is the evolution of desktop windowing, which is stable in Android 16 and is packed with improvements and new capabilities.

Desktop windowing stable release

We’ve made substantial improvements in the stability and performance of desktop windowing in Android 16. This means users will encounter a smoother, more reliable experience when managing app windows on connected displays. Beyond general stability improvements, we’re introducing several new features:

    • Flexible window tiling: Multitasking gets a boost with more intuitive window tiling options. Users can more easily arrange multiple app windows side by side or in various configurations, making it simpler to work across different applications simultaneously on a large screen.
    • Multiple desktops: Users can set up multiple desktop sessions to match their distinct productivity requirements and switch between the desktops using keyboard shortcuts, trackpad gestures, and Overview.
    • Enhanced app compatibility treatments: New compatibility treatments ensure that even legacy apps behave more predictably and look better on external displays by default. This reduces the burden on developers while providing a better out-of-the-box experience for users.
    • Multi-instance management: Users can manage multiple instances of supporting applications (for example, Chrome or, Keep) through the app header button or taskbar context menu.
      This allows for quick switching between different instances of the same app.
    • Desktop persistence: Android can now better maintain window sizes, positions, and states across different desktops. This means users can set up their preferred workspace and have it restored across sessions, offering a more consistent and efficient workflow.

Best practices for optimal app experiences on connected displays

With the introduction of connected display support in Android, it’s important to ensure your apps take full advantage of the new display capabilities. To help you build apps that shine in this enhanced environment, here are some key development practices to follow:

Build apps optimized for desktop

    • Design for any window size: With phones now connecting to external displays, your mobile app can run in a window of almost any size and aspect ratio. This means the app window can be as big as the screen of the connected display but also flex to fit a smaller window. In desktop windowing, the minimum window size is 386 x 352 dp, which is smaller than most phones. This fundamentally changes how you need to think about UI. With orientation and resizability changes in Android 16, it becomes even more critical for you to update your apps to support resizability and portrait and landscape orientations for an optimal experience with desktop windowing and connected displays. Make sure your app supports any window size by following the best practices on adaptive development.

Handle dynamic display changes

    • Don’t assume a constant Display object: The Display object associated with your app’s context can change when an app window is moved to an external display or if the display configuration changes. Your app should gracefully handle configuration change events and query display metrics dynamically rather than caching them.
    • Account for density configuration changes: External displays can have vastly different pixel densities than the primary device screen. Ensure your layouts and resources adapt correctly to these changes to maintain UI clarity and usability. Use density-independent pixels (dp) for layouts, provide density-specific resources, and ensure your UI scales appropriately.

Go beyond just the screen

    • Correctly support external peripherals: When users connect to an external monitor, they often create a more desktop-like environment. This frequently involves using external keyboards, mice, trackpads, webcams, microphones, and speakers. If your app uses camera or microphone input, the app should be able to detect and utilize peripherals connected through the external display or a docking station.
    • Handle keyboard actions: Desktop users rely heavily on keyboard shortcuts for efficiency. Implement standard shortcuts (for example, Ctrl+C, Ctrl+V, Ctrl+Z) and consider app-specific shortcuts that make sense in a windowed environment. Make sure your app supports keyboard navigation.
    • Support mouse interactions: Beyond simple clicks, ensure your app responds correctly to mouse hover events (for example, for tooltips or visual feedback), right-clicks (for contextual menus), and precise scrolling. Consider implementing custom pointers to indicate different actions.

Getting started

Explore the connected displays and enhanced desktop windowing features in the latest Android Beta. Get Android 16 QPR1 Beta 2 on a supported Pixel device (Pixel 8 and Pixel 9 series) to start testing your app today. Then enable desktop experience features in the developer settings.

Support for connected displays in the Android Emulator is coming soon, so stay tuned for updates!

Dive into the updated documentation on multi-display support and window management to learn more about implementing these best practices.

Feedback

Your feedback is crucial as we continue to refine these experiences. Please share your thoughts and report any issues through our official feedback channels.

We’re committed to making Android a versatile platform that adapts to the many ways users want to interact with their apps and devices. The improvements to connected display support are another step in that direction, and we can’t wait to see the amazing experiences you’ll build!

The post Developer preview: Enhanced Android desktop experiences with connected displays appeared first on InShot Pro.

]]>
Google I/O 2025: Build adaptive Android apps that shine across form factors https://theinshotproapk.com/google-i-o-2025-build-adaptive-android-apps-that-shine-across-form-factors/ Wed, 04 Jun 2025 12:03:09 +0000 https://theinshotproapk.com/google-i-o-2025-build-adaptive-android-apps-that-shine-across-form-factors/ Posted by Fahd Imtiaz – Product Manager, Android Developer If your app isn’t built to adapt, you’re missing out on ...

Read more

The post Google I/O 2025: Build adaptive Android apps that shine across form factors appeared first on InShot Pro.

]]>

Posted by Fahd Imtiaz – Product Manager, Android Developer

If your app isn’t built to adapt, you’re missing out on the opportunity to reach a giant swath of users across 500 million devices! At Google I/O this year, we are exploring how adaptive development isn’t just a good idea, but essential to building apps that shine across the expanding Android device ecosystem. This is your guide to meeting users wherever they are, with experiences that are perfectly tailored to their needs.

The advantage of building adaptive

In today’s multi-device world, users expect their favorite applications to work flawlessly and intuitively, whether they’re on a smartphone, tablet, or Chromebook. This expectation for seamless experiences isn’t just about convenience; it’s an important factor for user engagement and retention.

For example, entertainment apps (including Prime Video, Netflix, and Hulu) users on both phone and tablet spend almost 200% more time in-app (nearly 3x engagement) than phone-only users in the US*.

Peacock, NBCUniversal’s streaming service has seen a trend of users moving between mobile and large screens and building adaptively enables a single build to work across the different form factors.

“This allows Peacock to have more time to innovate faster and deliver more value to its customers.”

– Diego Valente, Head of Mobile, Peacock and Global Streaming

Adaptive Android development offers the strategic solution, enabling apps to perform effectively across an expanding array of devices and contexts through intelligent design choices that emphasize code reuse and scalability. With Android’s continuous growth into new form factors and upcoming enhancements such as desktop windowing and connected displays in Android 16, an app’s ability to seamlessly adapt to different screen sizes is becoming increasingly crucial for retaining users and staying competitive.

Beyond direct user benefits, designing adaptively also translates to increased visibility. The Google Play Store actively helps promote developers whose apps excel on different form factors. If your application delivers a great experience on tablets or is excellent on ChromeOS, users on those devices will have an easier time discovering your app. This creates a win-win situation: better quality apps for users and a broader audience for you.

examples of form factors across small phones, tablets, laoptops, and auto

Latest in adaptive Android development from Google I/O

To help you more effectively build compelling adaptive experiences, we shared several key updates at I/O this year.

Build for the expanding Android device ecosystem

Your mobile apps can now reach users beyond phones on over 500 million active devices, including foldables, tablets, Chromebooks, and even compatible cars, with minimal changes. Android 16 introduces significant advancements in desktop windowing for a true desktop-like experience on large screens and when devices are connected to external displays. And, Android XR is opening a new dimension, allowing your existing mobile apps to be available in immersive virtual environments.

The mindset shift to Adaptive

With the expanding Android device ecosystem, adaptive app development is a fundamental strategy. It’s about how the same mobile app runs well across phones, foldables, tablets, Chromebooks, connected displays, XR, and cars, laying a strong foundation for future devices and differentiating for specific form factors. You don’t need to rebuild your app for each form factor; but rather make small, iterative changes, as needed, when needed. Embracing this adaptive mindset today isn’t just about keeping pace; it’s about leading the charge in delivering exceptional user experiences across the entire Android ecosystem.

examples of form factors including vr headset

Leverage powerful tools and libraries to build adaptive apps:

    • Compose Adaptive Layouts library: This library makes adaptive development easier by allowing your app code to fit into canonical layout patterns like list-detail and supporting pane, that automatically reflow as your app is resized, flipped or folded. In the 1.1 release, we introduced pane expansion, allowing users to resize panes. The Socialite demo app showcased how one codebase using this library can adapt across six form factors. New adaptation strategies like “Levitate” (elevating a pane, e.g., into a dialog or bottom sheet) and “Reflow” (reorganizing panes on the same level) were also announced in 1.2 (alpha). For XR, component overrides can automatically spatialize UI elements.

    • Jetpack Navigation 3 (Alpha): This new navigation library simplifies defining user journeys across screens with less boilerplate code, especially for multi-pane layouts in Compose. It helps handle scenarios where list and detail panes might be separate destinations on smaller screens but shown together on larger ones. Check out the new Jetpack Navigation library in alpha.

    • Jetpack Compose input enhancements: Compose’s layered architecture, strong input support, and single location for layout logic simplify creating adaptive UIs. Upcoming in Compose 1.9 are right-click context menus and enhanced trackpad/mouse functionality.

    • Window Size Classes: Use window size classes for top-level layout decisions. AndroidX.window 1.5 introduces two new width size classes – “large” (1200dp to 1600dp) and “extra-large” (1600dp and larger) – providing more granular breakpoints for large screens. This helps in deciding when to expand navigation rails or show three panes of content. Support for these new breakpoints was also announced in the Compose adaptive layouts library 1.2 alpha, along with design guidance.

    • Compose previews: Get quick feedback by visualizing your layouts across a wide variety of screen sizes and aspect ratios. You can also specify different devices by name to preview your UI on their respective sizes and with their inset values.

    • Testing adaptive layouts: Validating your adaptive layouts is crucial and Android Studio offers various tools for testing – including previews for different sizes and aspect ratios, a resizable emulator to test across different screen sizes with a single AVD, screenshot tests, and instrumental behavior tests. And with Journeys with Gemini in Android Studio, you can define tests using natural language for even more robust testing across different window sizes.

Ensuring app availability across devices

Avoid unnecessarily declaring required features (like specific cameras or GPS) in your manifest, as this can prevent your app from appearing in the Play Store on devices that lack those specific hardware components but could otherwise run your app perfectly.

Handling different input methods

Remember to handle various input methods like touch, keyboard, and mouse, especially with Chromebook detachables and connected displays.

Prepare for orientation and resizability API changes in Android 16

Beginning in Android 16, for apps targeting SDK 36, manifest and runtime restrictions on orientation, resizability, and aspect ratio will be ignored on displays that are at least 600dp in both dimensions. To meet user expectations, your apps will need layouts that work for both portrait and landscape windows, and support resizing at runtime. There’s a temporary opt-out manifest flag at both the application and activity level to delay these changes until targetSdk 37, and these changes currently do not apply to apps categorized as “Games”. Learn more about these API changes.

Adaptive considerations for games

Games need to be adaptive too and Unity 6 will add enhanced support for configuration handling, including APIs for screenshots, aspect ratio, and density. Success stories like Asphalt Legends Unite show significant user retention increases on foldables after implementing adaptive features.

examples of form factors including vr headset

Start building adaptive today

Now is the time to elevate your Android apps, making them intuitively responsive across form factors. With the latest tools and updates we’re introducing, you have the power to build experiences that seamlessly flow across all devices, from foldables to cars and beyond. Implementing these strategies will allow you to expand your reach and delight users across the Android ecosystem.

Get inspired by the “Adaptive Android development makes your app shine across devices” talk, and explore all the resources you’ll need to start your journey at developer.android.com/adaptive-apps!

Explore this announcement and all Google I/O 2025 updates on io.google starting May 22.

*Source: internal Google data

The post Google I/O 2025: Build adaptive Android apps that shine across form factors appeared first on InShot Pro.

]]>